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Abstract

We consider a thermoelastic problem for an elongated adhesively bonded assembly with identical nondeformable
adherends and a `piecewise continuous' adhesive layer: the adhesive layer consists of a large number of `pieces' that
di�er by their lengths, Young's moduli, Poisson's ratios, and coe�cients of thermal expansion. Assemblies of this

type are of interest in connection with the manufacturing, and mechanical and optical performance of some
photonics structures. We develop a stress analysis model for the evaluation of thermally induced stresses, strains and
displacements in the adhesive layer. These stresses are due to the thermal expansion (contraction) mismatch of the

adhesive material with the material of the adherends, as well as to the mismatch between the adjacent `pieces' of the
adhesive layer. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Adhesively bonded assemblies, subjected to mechanical or thermal loading, are widely used in
engineering. The mechanical behavior of such assemblies was analyzed in numerous studies (see, for
instance, VoÈ lkerson, 1938; de Bruyne, 1944; Goland and Reissner, 1944; Hart-Smith, 1973a, b, c; Suhir,
1986, 1994, 1997; Lin and Lin, 1993; Tsai and Morton, 1995). Adhesively bonded assemblies are
typically manufactured at an elevated (curing) temperature and subsequently cooled down to a low
(room, testing, or operation) temperature. If the adherends are made of dissimilar materials, thermally
induced stresses, caused by the thermal contraction mismatch of these materials, arise at low
temperature conditions.

There is an obvious incentive to employ identical adherends for lower interfacial stresses in, and a

International Journal of Solids and Structures 37 (2000) 2229±2252

0020-7683/00/$ - see front matter # 2000 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683(98 )00317-5

www.elsevier.com/locate/ijsolstr

* Tel.: 001 908 582 5301; fax. 001 908 582 5106.

E-mail address: suhir@lucent.com (E. Suhir)



lower bow of, the adherends. It is clear that in such a case the assembly, as a whole, will not experience
bending, but each of the adherends will bow, to a greater or lesser extent, with respect to the midplane
of the assembly. It is clear also that the thermal expansion (contraction) of the adhesive, which usually
need not be considered for dissimilar adherends (as long as the adhesive layer is thin and the adhesive
material has low Young's modulus), plays an important role in the case of thermally matched adherends
(see, for instance, Suhir, 1989).

In the analysis which follows we consider a thermoelastic problem for an elongated adhesively bonded
assembly with identical adherends and a `piecewise continuous' adhesive layer: this layer consists of a
large number of `pieces' that might di�er by their lengths, Young's moduli, Poisson's ratios, and
coe�cients of expansion (Fig. 1). The bow of the adherends is considered small enough, so that they can
be treated as nondeformable ones. Assemblies of this type are of interest, for instance, in connection
with their application in some photonics structures.

We examine a situation when the assembly is manufactured at an elevated temperature and is then
cooled down to a low temperature. The coe�cient of thermal expansion (contraction) of the adhesive
material is assumed to be considerably larger than that of the adherends.

The objective of the analysis is to develop an easy-to-use stress model for the evaluation of thermally
induced stresses, strains and displacements in the adhesive layer. These stresses and deformations are
due to the thermal contraction mismatch of the adhesive material with the material of the adherends, as
well as to the mismatch of the adjacent `pieces' of the adhesive layer with each other. The developed
stress model is intended to be used primarily for the evaluation of the e�ect of the thickness of the
adhesive layer, the lengths of its `pieces', and the mechanical properties of the employed materials on
the stresses and displacements in the adhesive material. Particularly, we intend to ®nd out whether the
adhesive material can be chosen and the adhesive layer can be designed in such a way that the
boundaries of the particular `pieces' of this layer remain straight (undistorted) despite the temperature
excursions, i.e. will not experience longitudinal (inplane) displacements as a result of temperature
change. The analysis is based on an elementary Structural Analysis (Strength of Materials) approach,
rather than on a Theory-of-Elasticity treatment of the problem.

The interfacial stresses and the adherends' bow are addressed in Appendix A. The results of the
analysis enable one to establish the conditions under which the adherends could be indeed treated as
nondeformable ones, whether a mechanical or any other criterion (say, optical) is applied.

Analysis of stresses and displacements in the adhesive layer of adhesively bonded assemblies with
identical nondeformable adherends, carried out for an elongated (long-and-narrow) and a circular
assembly (Suhir, 1999), was then extended for the case of a nonhomogeneous adhesive layer (Suhir,
1997), whose mechanical properties in its midportion were di�erent from those in the peripheral areas.
The analysis, which is set forth below, is in e�ect, a generalization of the developed stress model for the
case of a large number of nonhomogeneous portions (`pieces').

1.1. Basic equation: `Theorem of three boundary forces'

Let an elongated adhesively bonded assembly with identical nondeformable adherends and a

Fig. 1. An adhesively bonded assembly with a `piecewise-continuous' adhesive layer.
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`piecewise continuous' adhesive layer (Fig. 1) be manufactured at an elevated temperature and
subsequently cooled down to a lower temperature. This results in interfacial shearing stresses, ti�xi �,
acting in the i-th `piece' of the adhesive layer, and in boundary forces, T̂i, acting between the (i±1)-st
and i-th `pieces' of this layer (Fig. 2). The displacement, ui�ÿli �, at the edge xi � ÿli of the i-th `piece'
can be expressed, using the formulas (B5) of Appendix B, as

ui� ÿ li � � ki

 
DaiDt

kiki
tanh kili ÿ kiT̂i cotanh 2kili � kiT̂i�1

sinh 2kili

!
: �1�

Here ki is the interfacial compliance of the i-th `piece' of the adhesive layer, li is its longitudinal
compliance, li is half the `piece' length, Dai is the di�erence between the coe�cients of thermal
expansion of the material of the given `piece' of the adhesive layer and the material of the `adherends',
and Dt is the change in temperature.

The ®rst term in the parentheses in formula (1) is the interfacial shearing stress caused by the thermal
contraction mismatch of the i-th `piece' of the adhesive layer with the material of the adherends (Suhir,
1986). The second term is the interfacial shearing stress caused by the force, T̂i, applied at the i-th
boundary, i.e. at the boundary at which the displacement, ui�ÿli �, is sought (see Appendix B). The third
term is the interfacial shearing stress at the i-th boundary due to the force, T̂i�1, applied at the (i + l)-st
boundary (see Appendix B). The forces, T̂, are considered positive, if they are tensile ones. The second
term in (1) is taken with a sign `minus' since the boundary force, T̂i, reduces the displacement at the i-th
boundary.

The formula for the displacement of the (i ÿ l)-st `piece' of the adhesive layer at the edge xiÿ1 � liÿ1
can be written in a similar fashion as

uiÿ1�liÿ1 � � kiÿ1

 
ÿ Daiÿ1Dt

kiÿ1kiÿ1
tanhkiÿ1liÿ1 � kiÿ1T̂i cotanh2kiÿ1liÿ1 ÿ kiÿ1T̂iÿ1

sinh 2kiÿ1liÿ1

!
: �2�

The condition of the compatibility of displacements requires that the boundary displacements, ui�ÿli �
and uiÿ1�liÿ1�, expressed by formulas (1) and (2), respectively, be equal. This results in the following
equation for the unknown boundary forces, T̂iÿ1, T̂i, and T̂i�1:

ÿdiÿ1T̂iÿ1 � diT̂i ÿ di�1T̂i�1 � Di, i � 1, 2, . . . �3�

where

diÿ1 � kiliÿ1
sinh 2kiÿ1liÿ1

,

di � kiliÿ1 cotanh 2kiÿ1liÿ1 � kiÿ1li cotanh 2kili � diÿ1 cosh 2kiÿ1liÿ1 � di�1 cosh 2kili,

Fig. 2. Boundary forces acting between the adhesive `pieces'.
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di�1 � kiÿ1li
sinh 2kili

�4�

and the `load term', Di, is expressed as

Di � �kiDaiÿ1tanh kiÿ1liÿ1 � kiÿ1Dai tanh kili �Dt, i � 1, 2, . . . �5�

The obtained equations are analogous to the equations, expressed by the well-known `Theorem of Three
Moments' in the theory of continuous beams with multiple supports (see, for instance, Timoshenko,
1956 or Suhir, 1991), and therefore the corresponding stress model can be called `Theorem of Three
Boundary Forces'.

1.2. Special cases

1.2.1. `Single piece' adhesive layer
In this case (Suhir, 1999), one can put, when examining the i-th `piece' of the adhesive layer, T̂iÿ1 � T̂i�1
� 0, liÿ1 � 0, and Daiÿ1 � 0. Then eqn (3) yields:

T̂i � DaiDt
li

tanh kili tanh 2kili � E 0
i k0DaiDt tanh kili tanh 2kili, �6�

where E 0
i � �Ei=�1ÿ vi �� is e�ective Young's modulus of the adhesive material.

When the i-th `piece' is long (when the product kili is larger than, say, 2.5), one can put tanh
kili ' tanh 2kil ' 1, and formula (6) yields:

T̂i � E 0
i h0DaiDt: �7�

The normal stress can be found in this case as

si � T̂i

h0
� E 0

i DaiDt: �8�

The requirement kili > 2:5 is equivalent to the condition:

2li > 5:0

�����
ki
li

r
: �9�

The formula (B3) of the Appendix B, in the case of a long `piece' of the adhesive layer, can be
simpli®ed, and results in the following formula for the interfacial compliance (Suhir, 1986):

ki � 1� vi
3Ei

h0: �10�

Note that this compliance depends on the thickness of the i-th `piece' of the adhesive layer and is
independent of the length of this `piece'.

Considering formula (B2) of Appendix B, one can write condition (9) as

2li
h0
> 5

����������������
1

3

1� vi
1ÿ vi

r
: �11�

Young's modulus of the adhesive material and its coe�cient-of-expansion do not enter this formula.
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Hence, these properties do not a�ect the conclusion whether the given `piece' of the adhesive layer
should or should not be treated as an in®nitely long one. Only Poisson's ratio is important.

The right part of the condition (11) is the largest, when Poisson's ratio is vi � 0:5 (noncompressible
adhesive material). This yields:

2li
h0
> 5: �12�

Thus, if the length of the given `piece' of the adhesive layer is at least ®ve-fold larger than its thickness,
this `piece' can be treated, as far as the boundary forces are concerned, as an in®nitely long one.

In the opposite extreme case, when the i-th `piece' of the adhesive layer is very short (say, kili < 0:4),
formula (6) yields:

T̂i � 2
DaiDt
ki

li: �13�

For low kili values, the expression (B3) of the Appendix B results in the following simple formula for
the interfacial compliance (Suhir, 1986):

ki � �1� vi � �3ÿ vi �
3Ei

li: �14�

In this case, the compliance depends on the length of the adhesive `piece' and is independent of the
thickness of the adhesive layer. With the expression (14) for the compliance, formula (13) yields:

T̂i � 6E 0
i

�1ÿ vi �li
�1� vi � �3ÿ vi �DaiDt, �15�

and the corresponding stress is

si � 6E 0
i

1ÿ vi
�1� vi � �3ÿ vi �

li
h0

DaiDt: �16�

The requirement kili < 0:4 is equivalent to the condition

2li
h
<

8

75

�1� vi � �3ÿ vi �
1ÿ vi

: �17�

The right part of this condition is the lowest for the lowest possible vi value. Actual materials are
typically characterized by Poisson's ratios that are not lower than 0.2. For vi � 0:2, the condition (17)
yields:

2li
h0
< 0:448: �18�

Note that for vi � 0:5 this requirement would be considerably less stringent:

2li
h0
< 0:800: �19�
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1.2.2. `Three-piece' (`bi-material') adhesive layer: the peripheral portions of the adhesive layer are identical
but are di�erent from its midportion
In this case one can put i � 1, T0 � 0, T2 � T1, l0 � l2, k0 � k2, and l0 � l2, and formula (3) yields
(Suhir, 1998):

T̂1 � k2Da1 tanh k1l1 � k1Da2 tanh k2l2

k2l1cotanh 2k1l1 � k1l2 cotanh 2k2l2 ÿ k2l1
sinh 2k1l1

Dt: �20�

If all three `pieces' of the adhesive layer are su�ciently long, formula (20) can be simpli®ed as follows:

T̂1 � k2Da1 � k1Da2
k1l2 � k2l1

Dt: �21�

When k1 � k2 � k, l1 � l2 � l, and Da1 � Da2 � Da, this formula leads to formula (7).

1.3. Zero distortion conditions

The conditions of zero distortion of the boundaries of the `pieces' of the adhesive layer can be
written, using formulas (1) and (2), as follows:

T̂i cotanh 2kili ÿ T̂i�1
sinh 2kili

� DaiDt
li

tanh kili

ÿ T̂iÿ1
sinh 2kiÿ1liÿ1

� T̂i cotanh 2kiÿ1liÿ1 � Daiÿ1Dt
liÿ1

tanh kiÿ1liÿ1:

�22�

These conditions, taken together, are `stronger' than the requirement underlying eqn (3). Indeed, this
equation requires that the boundary displacements, whatever their magnitudes, are the same, while
conditions (22) impose an additional requirement that all these displacements be zero. As a matter of
fact, the `Three Boundary Force Equation' (3) can be obtained also by summing up eqns (22), i.e. by
substituting the two eqns (22) with a single eqn (3).

If one requires that the boundary forces are the same at all the boundaries, i.e. that T̂i�1 � T̂i � T̂iÿ1,
then the eqns (22) yield:

T̂i � T1i �
DaiDt
li

, i � 1, 2, . . . �23�

This can take place only in a situation, when all the `pieces' of the adhesive layer are su�ciently long.
Indeed, formula (23) can be obtained from eqns 22 also by putting kiÿ1liÿ141 and kili41.

The formula (23) can be used to formulate the requirement for the materials characteristics that
would lead to distortion-free boundaries in an adhesive layer with su�ciently long `pieces'. This formula
indicates that the boundaries of such `pieces' will remain undistorted, if the product E 0

i DaiDt is kept
constant throughout the adhesive layer, i.e. if e�ective Young's moduli of any two `pieces', i and j, of
this layer are inversely proportional to the thermal expansion (contraction) mismatch strains of the
materials of these `pieces' with the material of the adherends:

E 0
i

E 0
j

� DajDt
DaiDt

: �24�
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2. Numerical example

Let a 0.25 mm thick adhesive layer of an adhesively bonded assembly with identical nondeformable
adherends be comprised of ®ve 1.25 mm long ��l=h0� � 2:5� `pieces'. The mechanical characteristics of
these `pieces' are given in Table 1. The calculations of the boundary forces, based on eqns (3), are
carried out in Table 2. The calculated forces are shown in Table 1 in the fourth line from the bottom.
These forces are the highest in the midportion of the adhesive layer, in which generalized Young's
moduli, E 0

i , and the induced strains, ei, are the largest.
The shearing stress, ti, in the i-th `piece' at its i-th (left) boundary, i.e. at the boundary of this `piece'

with the (i ÿ 1)-st `piece' of the adhesive layer, can be calculated, based on the formulas (B5) of the
Appendix B, as follows:

ti � ÿki
 
T̂i cotanh 2kili ÿ T̂i�1

sinh 2kili

!
:

The corresponding boundary displacement is ui � kiti. Using the input information and the calculated
boundary forces from Table 1, we obtain:

t0 � k0
T̂1

sinh 2k0l0
� 4:000� 2:788

74:2032
� 0:15029 g=mm2,

Table 1

Materials' properties and calculated boundary distortions (displacements), ui

Boundary, i 0 1 2 3 4 5 6

Young's modulus, Ei, kg/mm2 0.141 0.282 0.423 0.564 0.423 0.282 Ð

Poisson's ratio, vi 0.50 0.49 0.48 0.47 0.48 0.49 Ð

E�ective Young's modulus,

E 0
i � �Ei=�1ÿ vi ��, kg/mm2

0.282 0.553 0.813 1.064 0.813 0.553 Ð

Thermally induced strain, ei � DaiDt 0.02 0.04 0.06 0.08 0.06 0.04 Ð

`Piece' length, 2li, mm 1.25 1.25 1.25 1.25 1.25 1.25 Ð

Axial compliance of the adhesive

layer, �l0�i � �1=E 0
i hi �, mm/kg

14.184 7.233 4.920 3.759 4.920 7.233 Ð

Shearing compliance of the adhesive

layer, �k0�i � �1� vi=3Ei �h0, mm3/kg

0.8865 0.4403 0.2916 0.2172 0.2916 0.4403 Ð

Eigenvalue of the problem,

ki �
����������������������l0�i=�k0�i

p
, mmÿ1

4.000 4.053 4.108 4.160 4.108 4.053 Ð

Length parameter, kili 2.500 2.533 2.567 2.600 2.567 2.533 Ð

sinh �2kili � 74.203 79.2663 84.844 90.633 84.844 79.266 Ð

cotanh �2kili � 1 1 1 1 1 1 Ð

tanh �kili � 0.9866 0.9875 0.9883 0.9890 0.9883 0.9875 Ð

ei tanh kili 0.01973 0.03950 0.05930 0.07912 0.05930 0.03950 Ð

Boundary force per unit assembly

width, T̂i, g/mm

0 2.788 8.204 16.052 16.050 8.184 Ð

E 0
i ei tanh �kili �, g/mm2 5.564 21.843 48.211 84.184 48.211 21.843 Ð

Shearing stress, �t0�i, g/mm2 0.150 ÿ10.880 ÿ32.925 ÿ66.040 ÿ65.537 ÿ33.170 ÿ0.418
Boundary distortion, ui, mm 0.133 ÿ4.791 ÿ9.601 ÿ14.344 ÿ19.111 ÿ14.605 ÿ0.184
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Table 2

Calculated boundary forces, T̂i

i � 1; d1T̂1 ÿ d2T̂2 � D1;

d1 � k1l0 cotanh 2k0l0 � k1l1 cotanh 2k1l1
� 4:053� 14:184� 4:000� 7:233 � 86:420 kgÿ1;

d2 � k0l1
sinh 2k1l1

� 4:000� 7:233

79:2663
� 0:3650 kgÿ1;

D1 � k1e0 tanh k0l0 � k0e1 tanh k1l1
� 4:053� 0:01973� 4:000� 0:03950 � 0:2380 mmÿ1;
86:420T̂1 ÿ 0:365T̂2 � 0:238; 236:767T̂1 ÿ T̂2 � 0:6520 �1�

i � 2;ÿ d1T̂1 � d2T̂2 ÿ d3T̂3 � D2;

d1 � k2l1
sinh 2k1l1

� 4:108� 7:233

79:2663
� 0:3748 kgÿ1;

d2 � k2l1 cotanh 2k1l1 � k1l2 cotanh 2k2l2
� 4:108� 7:233� 4:053� 4:920 � 49:654 kgÿ1;

d3 � k1l1
sinh 2k2l2

� 4:053� 4:920

84:8443
� 0:2350 kgÿ1;

D2 � k2e1 tanh k1l1 � k1e2 tanh k2l2
� 4:108� 0:03950� 4:053� 0:05930 � 0:4026 mmÿ1;
ÿ0:3748T̂1 � 49:654T̂2 ÿ 0:2350T̂3 � 0:4026;ÿ 1:595T̂1 � 211:294T̂2 ÿ T̂3 � 1:713 �2�

i � 3;ÿ d2T̂2 � d3T̂3 ÿ d4T̂4 � D3;

d2 � k3l2
sinh 2k2l2

� 4:160� 4:920

84:8443
� 0:2412 kgÿ1;

d3 � k3l2 cotanh 2k2l2 � k2l3 cotanh 2k3l3
� 4:160� 4:920� 4:108� 3:759 � 35:909 kgÿ1;

d4 � k2l3
sinh 2k3l3

� 4:108� 3:759

90:6334
� 0:1704 kgÿ1;

D3 � k3e2 tanh k2l2 � k2e3 tanh k3l3
� 4:160� 0:0593� 4:108� 0:07912 � 0:5717mmÿ1;
ÿ0:2412T̂2 � 35:909T̂3 ÿ 0:1704T̂4 � 0:5717;
ÿ1:415T̂2 � 210:733T̂3 ÿ T̂4 � 3:355 �3�

i � 4;ÿ d3T̂3 � d4T̂4 ÿ d5T̂5 � D4;

d3 � k4l3
sinh 2k3l3

� 4:108� 3:759

90:6334
� 0:1704 kgÿ1;

d4 � k4l3 cotanh 2k3l3 � k3l4 cotanh 2k4l4
� 4:108� 3:759� 4:160� 4:920 � 35:909 kgÿ1;

d5 � k3l4
sinh 2k4l4

� 4:160� 4:920

84:8443
� 0:2412 kgÿ1;

D4 � k4e3 tanh k3l3 � k3e4 tanh k4l4
� 4:108� 0:07912� 4:160� 0:0593 � 0:5717mmÿ1;
ÿ0:1704T̂3 � 35:909T̂4 ÿ 0:2412T̂5 � 0:5717
ÿ0:706T̂3 � 148:876T̂4 ÿ T̂5 � 2:370 �4�

i � 5;ÿ d4T̂4 � d5T̂5 � D5;

d4 � k5l4
sinh 2k4l4

� 4:053� 4:920

84:8443
� 0:2350 kgÿ1;

d5 � k5l4 cotanh 2k4l4 � k4l5 cotanh 2k5l5
� 4:053� 4:920� 4:108� 7:233 � 49:654 kgÿ1;

d5 � k5e4 tanh k4l4 � k4e5 tanh k5l5
� 4:053� 0:0593� 4:108� 0:0395 � 0:4026 mmÿ1;
ÿ0:235T̂4 � 49:654T̂5 � 0:4026
ÿ0:004732T̂4 � T̂5 � 0:008108 �5�
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u0 � k0t0 � 0:8865� 0:15029 � 0:1332 mm;

t1 � ÿk1
 
T̂1 cotanh 2k1l1 ÿ T̂2

sinh 2k1l1

!
� ÿ4:053

�
2:788ÿ 8:204

79:2663

�
� 10:8803 g=mm2,

u1 � k1t1 � 0:4403� � ÿ 10:8803� � ÿ4:7906 mm;

t2 � ÿk2
 
T̂2 cotanh 2k2l2 ÿ T̂3

sinh 2k2l2

!
� ÿ4:108

�
8:204ÿ 16:052

84:8443

�
� ÿ32:9248 g=mm2,

u2 � k2t2 � 0:2916� � ÿ 32:9248� � ÿ9:6009 mm;

t3 � ÿk3
 
T̂3 cotanh 2k3l3 ÿ T̂4

sinh 2k3l3

!
� ÿ4:160

�
16:052ÿ 16:050

90:6334

�
� ÿ66:0396 g=mm2,

u3 � k3t3 � 0:2172� � ÿ 66:0396� � ÿ14:3438 mm;

t4 � ÿk4
 
T̂4 cotanh 2k4l4 ÿ T̂5

sinh 2k4l4

!
� ÿ4:108

�
16:050ÿ 8:184

84:8443

�
� ÿ65:5371 g=mm2,

u4 � k4t4 � 0:2916� 65:4363 � ÿ19:111 mm;

t5 � ÿk5
ÿ
T̂5 cotanh 2k5l5

�
� ÿ4:053� 8:184 � ÿ33:1698 g=mm2,

The equations (4) and (5) result in the relationship:

ÿ0:706T̂3 � 148:872T̂4 � 2:3780ÿ 0:004742T̂3 � T̂4 � 0:01597; �6�

From (3) and (6) we have:

ÿ1:415T̂2 � 210:728T̂3 � 3:371ÿ 0:006715T̂2 � T̂3 � 0:01600; �7�

From (2) and (7) we ®nd:

ÿ1:595T̂1 � 211:287T̂2 � 1:7290ÿ 0:007549T̂1 � T̂2 � 0:008183; �8�

From (1) and (8) we obtain:

236:759T̂1 � 0:66018; T̂1 � 0:002788 kg=mm � 2:788 g=mm;

Then the forces T̂2, T̂3, T̂4 and T̂5 can be computed from the eqns (8), (7), (6) and (5), respectively:

T̂2 � 0:008204 kg/mm = 8.204 g/mm; T̂3 � 0:016052 kg/mm = 16.052 g/mm;

T̂4 � 0:016050 kg/mm = 16.050 g/mm; T̂5 � 0:008184 kg/mm = 8.184 g/mm.

Table 2 (continued)
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u5 � k5t5 � ÿ0:4403� 33:1698 � ÿ14:6046 mm;

t6 � ÿk5 T̂5

sinh 2k5l5
� ÿ4:053 8:184

79:2663
� ÿ0:41846 g=mm2,

u6 � k5t6 � ÿ0:4403� 0:41846 � ÿ0:1842 mm:

The predicted distortions of the boundaries of the adhesive `pieces' are shown in Fig. 3. Note that the
change in the factors E 0

i DaiDt tanh kili can be used, as follows from eqns (22) and (23), as a suitable
measure of the degree of the distortion of the boundaries. The calculated values of these factors are
shown in Table 1.

3. Conclusion

A simple stress model (`Theorem of Three Boundary Forces') is developed for the evaluation of the
boundary forces and the boundary displacements in an adhesively bonded assembly with identical
nondeformable adherends and a `piecewise continuous' adhesive layer. It is shown that each `piece' of
the adhesive layer can be treated, from the standpoint of the induced boundary forces and
displacements, as an in®nitely long one, if its actual length is at least ®ve times larger than the layer
thickness. It is shown also that in such a case the inner boundaries of the `pieces' of the adhesive layer
will remain straight (undistorted), i.e. will not be a�ected by the change in temperature, if the product
of the e�ective Young's modulus of the adhesive material and the thermally induced strain in it is kept
the same for all the adhesive `pieces', i.e. if this product is kept constant throughout the assembly.
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Fig. 3. Distorted boundaries of the adhesive layer.
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Appendix A. Thermally induced stresses and bow of the adherends in an elongated adhesively bonded
assembly with identical adherends

Basic equations

The objective of the analysis carried out in this Appendix is to develop a simple stress model for the
prediction of the interfacial stresses in, and the bow of, the adherends in an elongated bimaterial adhesively
bonded assembly with identical adherends. The results of this anlaysis can be used to establish the
materials properties and the geometric characteristics of an assembly, in which the induced stresses and
the bow of the adherends will not exceed the allowable value. The taken approach can be easily
generalized for con®gurations other than an elongated plate.

The adherend strips in an elongated adhesively bonded assembly with identical adherends can be
treated, from the standpoint of structural analysis, as thin long-and-narrow plates lying on a continuous
elastic foundation provided by the adhesive layer (Fig. 4). If the assembly is manufactured at an
elevated temperature and is subsequently cooled down to a low temperature, then the interfacial
shearing, t�x�, and `peeling', p�x�, stresses arise because of the thermal contraction mismatch of the
adhesive material with the material of the adherends. These stresses result in the bow of the adherend
plates (strips). The elastic curve, w�x�, of an adherend, subjected to the action of the interfacial stresses,
can be found from the equation:

Dw 00�x� �
�x
ÿl

�x 0
ÿl
p�x� dx dx 0 ÿ T�x�h

2
: �A1�

Here, w(x ) is the de¯ection function, D � �Eh3=�12�1ÿ v�2�� is the adherend's ¯exural rigidity, E and v
are the elastic constants of the adherends material, h is the adherend thickness, l is half the assembly
length,

T�x� �
�x
ÿl
t�x� dx �A2�

is the force acting in the given cross-section of the adherend, x, and t�x� and p�x� are the interfacial
shearing stress and the through-thickness (`peeling') stress, respectively. The origin, O, of the coordinate
x is in the mid-cross-section of the adherend plate.

Fig. 4. An adhesively bonded assembly with identical adherends subjected to bending.
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Because of the symmetry of the deformations of the assembly with respect to its midplane, the
`peeling' stress, p(x ), can be sought, in an approximate analysis, in the form:

p�x� � ÿ2Kw�x�, �A3�

where

K ' E0ÿ
1ÿ v20

�
h0

is the spring constant of the elastic foundation, provided by the adhesive layer, E0 and v0 are the elastic
constants of the adhesive material, and ho is the thickness of the adhesive layer.

Di�erentiating eqn (A1) twice, and considering the relationships (A2) and (A3), we obtain the
following equation for the unknown interfacial stresses, t�x� and p(x ):

pIV�x� � 4a4p�x� � 2ha4t 0�x�, �A4�

where

a �
�

K

2D

�1=4

: �A5�

In order to obtain an additional relationship for the functions t�x� and p(x ), we use the condition

u0�x� � u1�x� �A6�

of the compatibility of the longitudinal interfacial displacements, u0�x� and u1�x�, of the adhesive layer,
and one of the adherend plates. If the stresses t�x� were known, then these displacements could be
evaluated by the approximate formulas (Suhir, 1986):

u0�x� � ÿa0Dtxÿ l0

�x
0

T�x� dx� k0t�x�

u1�x� � ÿa1Dtx� 2l1

�x
0

T�x� dxÿ 2k1t�x�, �A7�

where a0 and a1 are the coe�cients of thermal expansion (contraction) of the adhesive and the adherend
materials, respectively,

l0 � 1ÿ v0
E0h0

, l1 � 1ÿ v1
E1h1

are the longitudinal compliances of the adhesive layer and one of the adherends,

k0 � h0
6G0
� 1

3
�1� v0� h0

E0

k1 � h1
3G1
� 2

3
�1� v1� h1

E1
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are the interfacial compliances of the adhesive layer and the adherend plates, respectively, and Dt is the
change in temperature.

Introducing the formulas (A7) into the displacement compatibility condition (A6) and accounting for
the fact that the compliances, l1 and k1, of the adherends are signi®cantly smaller than the compliances,
l0 and k0, of the adhesive, we obtain the following integral equation for the interfacial shearing stress
function, t�x�:

l0

�x
0

T�x� dxÿ k0t�x� � ÿDaDtx, �A8�

where Da � a0 ÿ a1 is the di�erence in the coe�cients of expansion of the adhesive and the adherend
materials, and the force T(x ) is expressed by the formula (A2).

Di�erentiating eqn (A8) with respect to the coordinate x, we obtain:

l0T�x� ÿ k0t 0�x� � ÿDaDt: �A9�
Since T(l ) = 0 (there are no external longitudinal forces acting at the edge x = l ), eqn (A9) results in
the following boundary condition for the interfacial shearing stress function t�x�:

t 0�l� � ÿDaDt
k0

: �A10�

Di�erentiating eqn (A9) and considering the relationship (A2), we obtain the following di�erential
equation for the shearing stress function, t�x�:

t 00�x� ÿ k2t�x� � 0, �A11�
where

k �
������
l0
k0

s
� 1

h0

����������������
3
1ÿ v0
1� v0

s
:

is the factor of the interfacial stress.

Interfacial stresses

The eqn (A11) has the following solution:

t�x� � C0 sinh kx� C1 cosh kx, �A12�
where C0 and C1 are constants of integration. The interfacial shearing stress, t�x�, must be
antisymmetric with respect to the origin. Therefore one should put C1 � 0, and the solution (A12)
yields:

t�x� � C0 sinh kx: �A13�
Introducing this formula into the condition (A10), we obtain:

C0 � DaDt
kk0

1

cosh kl
:

With this constant of integration, the formula (A13) results in the following expression for the

E. Suhir / International Journal of Solids and Structures 37 (2000) 2229±2252 2241



interfacial shearing stress:

t�x� � DaDt
kk0

sinh kx

cosh kl
� k

DaDt
l0

sinh kx

cosh kl
� 2G0

����������������
3
1� v0
1ÿ v0

s
DaDt

sinh kx

cosh kl
, �A14�

where G0 � �E0=�2�1� v0��� is the shear modulus of the adhesive material.
The formula (A14) indicates that in a situation, when Young's modulus of the adhesive material is

signi®cantly lower than Young's modulus of the adherends, the thickness of the adhesive layer does not
a�ect the interfacial shearing stress. This formula indicates also that the interfacial shearing stress is
proportional to the shear modulus of the adhesive material.

With the formula (A14) for the shearing stress, eqn (A4) for the peeling stress can be written as follows:

pIV�x� � 4a4p�x� � 2ha4
DaDt
k0

cosh kx

cosh kl
: �A15�

This equation is not di�erent from the well-known equation of bending of a beam lying on a continuous
elastic foundation (see, for instance, Timoshenko, 1956). Therefore the solution to eqn (A15) can be
sought in the form (see, for instance, Suhir, 1991):

p�x� � D0V0�ax� �D2V2�ax� ÿ A
cosh kx

cosh kl
, �A16�

where D0 and D2 are constants of integration. The ®rst two terms in this expression provide the general
solution to the homogeneous equation corresponding to the nonhomogeneous eqn (A15). The third term
is the particular solution to the eqn (A15). The constant A in this solution can be found as

A � ÿ 2ha4DaDt
k0�k4 � 4a4� :

The functions V0�ax� and V2�ax� in (A16) are expressed by the formulas

V0�ax� � cosh ax cos ax, V2�ax� � sinh ax sin ax,

and obey the following rules of di�erentiation:

V 00�ax� � ÿa
���
2
p

V3�ax�, V 01�ax� � a
���
2
p

V0 �ax�,

V 02�ax� � a
���
2
p

V1�ax�, V 03�ax� � a
���
2
p

V2 �ax�:
The functions V1�ax� and V2�ax� are expressed as

V1�ax� � 1���
2
p �cosh ax sin ax� sinh ax cos ax�,

V3�ax� � 1���
2
p �cosh ax sin axÿ sinh ax cos ax�:

The functions Vi�ax�, i � 0, 1, 2, 3, are tabulated (Suhir, 1991).
The de¯ection function, w(x), of the adherend must satisfy the boundary conditions:
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w 00�l� � 0, w 000�l� � 0: �A17�
These conditions indicate that there are no external concentrated bending moments, nor concentrated
lateral forces acting at the end x = l. The conditions (A17) lead, with consideration of the relationship
(A3), to the following boundary conditions for the peeling stress function, p(x ):

p 00�l� � 0, p 000�l� � 0: �A18�
Introducing (A16) into these conditions, we obtain the following algebraic equations for the constants
D0 and D2:

V2�u�D0 ÿ V0�u�D2 � ÿk
2A

2a2

V1�u�D0 � V3�u�D2 � ÿ k3A

2
���
2
p

a3
tanh kl, �A19�

where the parameter u is expressed as

u � al � l

�
K

2D

�1=4

:

From eqns (A19) we ®nd:

D0 � ÿ k2A

2
���
2
p

a3
kV0�u� tanh kl� a

���
2
p

V3 �u�
V0�u�V1�u� � V2�u�V3 �u�

� ÿk
2A

a3
kV0�u� tanh kl� a

���
2
p

V3 �u�
sinh 2u� sin 2u

D2 � ÿ k2A

2
���
2
p

a3
kV2�u� tanh klÿ a

���
2
p

V1 �u�
V0�u�V1�u� � V2�u�V3 �u�

� ÿk
2A

a3
kV2�u� tanh kl� a

���
2
p

V1 �u�
sinh 2u� sin 2u

:

Lateral load

The total lateral (`through-thickness') load, q(x ), can be found as the sum of the `peeling' load, p(x ),
expressed by eqn (A16), and the additional load, ÿ�h=2�t 0�x�, which is due to the nonuniform
longitudinal distribution of the interfacial shearing stress:

q�x� � p�x� ÿ h

2
t 0�x� � D0V0�ax� �D2V2�ax� � k4A

4a4
cosh kx

cosh kl
:

This expression can be obtained also directly from eqn (A1).
The lateral load, q(x ), is self-equilibrated. Indeed,
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�l
0

q�x� dx � 1

a
���
2
p �

D0 V1�u� �D2 V3�u�
�� k3A

4a4
tanh kl

� 1

a
���
2
p k3A

2
���
2
p

a3
tanh kl� k3A

4a4
tanh kl � 0, �A20�

and �l
0

�x
0

q�x� dx dx 0 � 1

2a2
�
D0 V2�u� ÿD2 V0�u�

�� k2A

4a4

� 1

2a2
k2A

2a2
� k2A

4a4
� 0:

Lateral forces and bending moments in the adherends

The lateral force, N(x ), in the adherends can be evaluated as

N�x� �
�x
0

q�x� dx � 1

a
���
2
p �

D0 V1�ax� �D2 V3 �ax�
�� k3A

4a4
sinh kx

cosh kl
: �A21�

This force is zero at the origin (x = 0). In addition, as evident from (A20), the lateral force is equal to
zero at the end x = l. The formula (A21) indicates that the lateral force function, N(x ), is
antisymmetric with respect to the origin: N�x� � ÿN�ÿx�.

The bending moment can be obtained from (A21) by integration:

M�x� �
�x
ÿl
N�x� dx � D0

2a2
�
V2 �ax� ÿ V2�u�

�ÿ D2

2a2
�
V0 �ax� ÿ V0�u�

�ÿ k2A

4a4

�
1ÿ cosh kx

cosh kl

�
: �A22�

The moment M(x ) is symmetric with respect to the origin: M(x ) = M(ÿx ). This moment is equal to
zero at the end x = l.

De¯ection function

The de¯ection function, w(x ), of the adherend can be found from the equilibrium equation (equation
of bending)

Dw 00�x� �M�x�:

Using (A22), we obtain:

Dw 0�x� � ÿD0

2a2

�
1

a
���
2
p V3 �ax� ÿ xV2 �u�

�
� D2

2a2

�
1

a
���
2
p V1 �ax� ÿ xV0 �u�

�
� k2A

4a4

�
xÿ 1

k

sinh kx

cosh kl

�
:

The constant of integration is put equal to zero in this equation, since the de¯ection function, w(x ),
must be symmetric with respect to the origin, and therefore the angle of rotation at the origin must be
zero: w 0�0� � 0. The integration of the above equation yields:
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Dw�x� � D0

2a2

�
1

2a2
V0 �ax� � 1

2
x2V2 �u�

�
� D2

2a2

�
1

2a2
V2 �ax� ÿ 1

2
x2V0 �u�

�

�k
2A

4a4

�
1

2
x2 ÿ 1

k2
cosh kx

cosh kl

�
� C

� 1

4a4

�
D0V0 �ax� �D2 V2 �ax� ÿ A

cosh kx

cosh kl

�

� x2

4a2

�
D0V2�u� ÿD2 V0�u� � k2A

2a2

�
� C:

As evident from the ®rst formula in (A19), the expression in parentheses in this equation is equal to
zero, and therefore,

Dw�x� � 1

4a4

�
D0V0 �ax� �D2 V2 �ax� ÿ A

cosh kx

cosh kl

�
� C: �A23�

The constant C in the obtained equation can be chosen in an arbitrary fashion. If, for instance, C = 0,
then, considering (A5), we have:

w�x� � 1

2K

�
D0V0�ax� �D2V2�ax� ÿ A

cosh kx

cosh kl

�

� 1

2K

�
q�x� ÿ A

�
1� k4

4a4

�
cosh kx

cosh kl

�
: �A24�

This formula can be used to compute the ordinates of the de¯ection curve of the adherend. It can be
used also to design an assembly, in which the adherends bow is as small, as necessary, whether
mechanical or any other (say, optical) criteria are considered.

Another way of calculating the ordinates, w(x ), of the de¯ection curve can be based on the direct
numerical integration of the lateral load, q(x ). If this approach is used, one should evaluate ®rst the
lateral force

N�x� �
�x
0

q�x� dx,

then compute the bending moment

M�x� �
�x
0

N�x� dx�
�l
0

q�x�x dx,

and, ®nally, calculate the de¯ection curve by the formula:

w�x� � 1

D

�x
0

�x
0

M�x� dx dx 0 � C:

This formula produces the same results as the formula (A24).
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Numerical data

The numerical data were obtained for a 100 mm long assembly (l = 50 mm) with 1 mm thick glass
adherends (E1 � 7384 kg/mm2, v1 � 0:20, a1 � 0:5� 10ÿ61=8C). Two types of adhesive material were
considered: a silicone gel type (E0 � 200 psi � 0:141kg=mm2, v0 � 0:490, a0 � 200� 10ÿ61=8C) and an
epoxy type E0 � 100,000 psi � 70:323kg=mm2, v0 � 0:420, a0 � 70� 10ÿ61=8C). The calculations were
performed for 0.25, 1.00, 2.00 and 5.00 mm thick adhesive layers. The assumed change in temperature
was Dt � 1508C.

The distribution of the interfacial shearing stresses along the assembly is shown in Fig. 5, for the
silicone gel type adhesive material, and in Fig. 11, for the epoxy type adhesive. The `peeling' stresses are
shown in Figs. 6 and 12 for the silicone gel adhesive and epoxy adhesive, respectively. The total lateral
load, which is due to the peeling stress and the additional component caused by the nonuniform
distribution of the interfacial shearing stress, is shown in Figs. 7 and 13 for the two types of the
adhesives considered. The lateral (shearing) forces in the adherends are shown in Figs. 8 and 14, for the
cases of a silicone-gel type of adhesive and for an epoxy type of adhesive, respectively. The bending
moments are shown in Figs. 9 and 15. Finally, the re¯ections of the adherends are plotted in Figs. 10
and 16.

As evident from the obtained results, the application of a high-modulus epoxy adhesive (in
comparison with the gel) results in substantially higher stresses than in an assembly with the silicone gel
adhesive, despite the signi®cantly higher coe�cient of expansion (contraction) of the silicone gel
material. As to the maximum de¯ections, these are quite comparable: the e�ect of the high Young's
modulus of the epoxy is `outweighed' to a great extent by its low coe�cient of expansion. The
calculated data indicate that thicker adhesives result in lower stresses in, and in higher displacements of,
the adherend strips.

The interfacial stresses responsible for the would-be adhesive failure of the adhesive material are
signi®cantly higher in the case of the epoxy adhesive than in the case of the silicone gel adhesive. It does
not mean, however, that the epoxy should be de®nitely regarded less preferable: its ultimate adhesive
strength can be signi®cantly higher than the adhesive strength of the silicone gel, and therefore the
integrity of an epoxy bonded assembly might not be compromised despite the high level of the induced
interfacial stresses.

The bending moments, responsible for the strength and the bow of the adherends, are substantially
larger in the case of an epoxy bonded assembly than in the case of the silicone gel. Note that the
maximum bending moments occur at the cross-sections which are close to the ends of the assembly. The
thickness of the adhesive layer has a relatively small e�ect on the maximum bending moment in an
assembly bonded with silicone gel, but has an appreciable e�ect on the maximum bending moment in
the case of an epoxy bonded assembly: the maximum bending moment decreases with an increase in the
thickness of this layer.

Summary

The obtained results can be used to establish the size of the midportion of the assembly within which
the thermally induced de¯ections of the adherends are su�ciently low. In the carried out examples, such
a `midportion' occupies, in the case of an epoxy bonded assembly, about 80% of the assembly length
with a 0.25 mm thick epoxy and only about 50% of the assembly length with a 5 mm thick epoxy. In
the case of a silicone gel adhesive, however, there is practically no `de¯ection free' midportion of the
assembly. The situation can be improved, if necessary, by using thicker adherends and thinner adhesive
layers, and/or by employing adherends with a better thermal match with the adhesive.
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Fig. 5. Shearing stress.

Fig. 6. Peeling stress.

Fig. 7. Lateral load.

Fig. 8. Lateral forces.
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Fig. 9. Bending moments.

Fig. 10. De¯ections.

Fig. 11. Shearing stress.

Fig. 12. Peeling stress.

E. Suhir / International Journal of Solids and Structures 37 (2000) 2229±22522248



Fig. 13. Lateral load.

Fig. 14. Lateral forces.

Fig. 15. Bending moments.

Fig. 16. De¯ections.

E. Suhir / International Journal of Solids and Structures 37 (2000) 2229±2252 2249



Appendix B. Adhesively bonded assembly subjected to shear

Let an adhesively bonded assembly with identical nondeformable adherends and a homogeneous
adhesive layer be subjected to an external force, T̂, applied to the edge of one of the adherends (Fig.
17). The second adherend is assumed to be ®xed. The induced force, T(x ), acting at an inner cross-
section, x, of the adhesive layer, can be sought in the form:

T�x� � C cosh kx�D sinh kx, �B1�
where C and D are constants of integration,

k �
����
l
k

r
is the factor of the shearing stress,

l � 1

E 0h0
, �B2�

is the longitudinal axial compliance of the adhesive layer, h0 is the thickness of this layer,
E 0 � �E=�1ÿ v��, is the generalized Young's modulus, E is Young's modulus of the adhesive material, v
is its Poisson's ratio,

k � 1

E

X1
i�1

giK�ui � sin aix

X1
i�1

giai sin aix

, ai � ip
2l
, i � 1, 3, 5, . . . �B3�

is the longitudinal interfacial (shearing) compliance of the adhesive layer (Suhir, 1986),

ui � ai
h0
2
� ip

4

h0
l
, i � 1, 3, 5, . . .

is the parameter of the thickness-to-length ratio for this layer, and

gi �
2

ail

�l
0

t�x� sin aix dx, i � 1, 3, 5, . . .

The function K�u1� in the formula (B3) is expressed as follows (Suhir, 1986):

Fig. 17. An adhesively bonded joint subjected to shear.
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K�ui � � 1� v

2

��
1ÿ vÿ �1� v�ui cotanh ui

�
cotanh ui � �1� v�ui � 2 cotanh ui ÿ 2�1ÿ v�

ui

�
:

The origin, O, of the coordinate x is in the mid-cross-section of the adhesive layer in its midplane.
Introducing (B1) into the boundary conditions

T� ÿ l� � 0, T�l� � T̂,

for the induced force, T(x ), we obtain the following formulae for the constants of integration:

C � T̂

2 cosh kl
, D � T̂

2 sinh kl
: �B4�

The formula for the shearing stress can be obtained from (B1) by di�erentiation:

t�x� � dT�x�
dx
� k�C sinh kx�D cosh kx�:

The shearing stress at the edges of the assembly can be found, using the formulas (B4), as follows:

t� ÿ l� � kT̂

sinh 2kl
, t�l� � kT̂ cotanh 2kl:

The displacements at the assembly edges can be evaluated by the formulas:

u� ÿ l� � kt� ÿ l� � kkT̂
sinh 2kl

, u�l� � kt�l� � kkT̂ cotanh 2kl: �B5�

For su�ciently long assemblies (kl > 2:5), the displacement, u�ÿl �, at the edge x=ÿl is zero, and the
displacement, u(l ), at the edge x = l is length independent:

u�l� � kkT̂:

For very short assemblies (kl < 0:1), both the edge displacements are approximately the same:

u� ÿ l� ' u�l� � kT̂
2l
:

As one can see from this formula, the displacements at the assembly edges are inversely proportional to
its length.
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